
=

ON THE EFFECT OF FLOW DIRECTION ON MIXED 
CONVECTION FROM A HORIZONTAL CYLINDER 

H. M. BADR 

Mechanical Engineering Department, University of Petroleum & Minerals, Dhahran, Saudi Arabia 

SUMMARY 

The influence of free stream direction on mixed (natural and forced) convective heat transfer from a circular 
cylinder is investigated. The cylinder, which has an isothermal surface, is placed with its axis horizontal and 
normal to the oncoming flow. The free stream direction varies between the vertically upward (parallel flow) 
and the vertically downward (contraflow) directions. The investigation is based on the time integration of the 
unsteady, two-dimensional equations of motion and energy until reaching steady conditions. The study is 
limited to Reynolds numbers up to Re = 40 and Grashoff numbers of Gr = Re'. The results are compared with 
the available experimental data and the agreement is satisfactory. 

INTRODUCTION 

The problem of laminar mixed convective heat transfer from a circular cylinder is a fundamental 
problem which has received extensive attention because of its many engineering applications. 
Several experimental studies have been carried out to investigate the effect of different factors on 
the heat transfer process. Some of these studies resulted in experimental correlations; however, no 
correlation could successfully predict the overall heat transfer coefficient and take into 
consideration all the parameters involved in the process. 

The first experimental investigation on the influence of free stream direction on the rate of heat 
transfer from a horizontal cylinder was carried out by Hatton et al.l who studied the problem up to 
Reynolds number Re = 45 and Grashoff number Gr = 10. In their work a correlation based on the 
vectorial addition of the forced and natural heat transfer coefficients was proposed. The correlation 
was proved to be successful except for the cases when the forced flow approaches a direction 
opposite to that of natural convection. Oosthuizen and Madan' studied the same problem when 
the forced flow makes an angle of 0, 90°, 135" or 180" with the direction of natural convection. The 
study was conducted at relatively high Re and Gr values compared to the range in Reference 1. 
Other experimental studies are found in References 3-6. 

On the other hand, most of the theoretical studies found in the literature have dealt with the case 
when both forced flow and natural convection are in the same direction. For example, Acrivos' 
studied the problem of combined convection in laminar boundary-layer flow in order to obtain the 
Nusselt number distribution near a stagnation point for the two cases of Pr -+0 and Pr -+ co. The 
approach requires the existence of boundary-layer flow and is limited to the region surrounding the 
stagnation point, Sparrow and Lee8 obtained an approximate solution for the Nusselt number 
distribution in the neighbourhood of the forward stagnation point for the case of parallel flow past 
a circular cylinder. The solution is based on the boundary-layer flow assumption and the problem 
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was solved only in the region from the stagnation point up to an angle of 70" where the flow 
separation was expected to occur. The work by Joshi and Sukhatme' and Merkin" falls in the 
same category as Reference 8 since it is again based on the boundary-layer flow assumption and is 
confined to the region preceding the point of separation. The problems of parallel, cross and contra 
flow heat transfer from a circular cylinder were also investigated by Nakai and 0kazaki.l' Their 
work was limited to very small values of Re and Gr besides its restriction to cases in which either 
forced or natural convection is dominant. It appears from the literature that there is no complete 
theoretical solution to the problem of laminar mixed convection from a horizontal cylinder that 
takes into account the effect of the forced flow direction. 

The main objective of this work is to conduct a theoretical investigation on the effect of flow 
direction on the velocity and thermal fields and consequently on the heat transfer process. Of 
special interest here is the case when the buoyant forces are of the same order of magnitude as the 
inertia forces. The study is based on the solution of the full conservation equations of mass, 
momentum and energy. 

PROBLEM STATEMENT AND ASSUMPTIONS 

The problem considered here is that of mixed convective heat transfer from a horizontal circular 
cylinder of radius a. The cylinder surface has a constant temperature T, and is placed in a uniform 
stream of velocity u, and temperature T,. The direction of the free stream, which is always normal 
to the cylinder axis, varies from vertically upward (y = 0) to vertically downward (y = 180"), where y 
is the angle between the oncoming flow and the vertically upward direction. The cylinder is 
assumed to be long enough so that end effects can be neglected and the flow is considered two- 
dimensional. The fluid properties are also assumed to behave according to the Boussinesq 
approximations. Consider the line 0 = 0 to represent the radius through the rearmost point on the 
cylinder surface viewed from the upstream direction (see Figure 1). Using the modified polar 
coordinates (t,  B), where t = Inr, the governing equations of motion and energy can be 
written as 

where t, r, *, [, #, Re, Gr and Pe are all dimensionless quarPtities defined as 

r' 
a' t = t'u,/a, r = - $ = $'/au,, [ = - Ca/u, 

# = ( T -  T,)/(T, - Tm), Re = 2au,/v, Gr = g / 3 ( 2 ~ ) ~ ( T ~  - T,)/v2 

and 

Pe = Pr Re 

where t' is the time, r' is the radial co-ordinate, $' is the stream function, i' is the vorticity, T is the 
temperature, Re is the Reynolds number, Gr is the Grashoff number, Pe is the Peclet number, Pr is 
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Figure 1. Co-ordinate system 

the Prandtl number, p is the coefficient of thermal expansion and v is the kinematic viscosity. All 
quantities with primes are dimensional quantities. 

The dimensionless velocity components u,( = ui/u,) and ve( = u&h,) are related to $ by 

a$ - u,=e-r- and u g =  -e r- 
a0 a t  

The boundary conditions for the velocity and thermal fields are 

(4) 

I g-+O and I$+O as <-+a 

The conditions in equation (5) are based on the no-slip, impermeability and isothermal conditions 
on the cylinder surface and the free stream conditions away from it. 

METHOD OF SOLUTION 

The method used for solving the governing equations (1)-(3) to obtain the steady velocity and 
temperature distributions is based on studying the time development of the velocity and thermal 
fields until reaching steady conditions. In this method the uniform stream is assumed to start 
suddenly from rest at t = 0 with no temperature difference between the cylinder surface and the 
oncoming flow. Following this start, the velocity boundary layer develops with time while there is 
no body force present. At a later time, when the boundary layer thickens, the cylinder surface 
temperature is assumed to be suddenly raised to T,. In the subsequent time, the velocity and 
thermal fields continue to develop simultaneously until the steady conditions are achieved. The 
approach is similar to that used by Badr.I2 

In the two cases when the forced flow is either vertically upward or vertically downward ( y  = 0 or 
180") the streamlines and isotherms are symmetrical about a vertical plane passing by the cylinder 
axis. However, for any other value of y the velocity and temperature fields become asymmetric. In 
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general, we express the functions $, ( and 4 in terms of the Fourier series expansions as 
N 

I 
I 

N 

n = l  
i = $Go(& t) + 1 g,(& t )  sin n8 + Gn(& t) cos n8 

I N 

a= 1 
4 = $H,It, tf + C h,(& t )  sin n6 + H,(t, t)  cos no 

For the two special cases of y = 0 and y = 180" the functions F,, F,, Go, G, and h, will vanish. The 
number of terms N in the series depends on the values of Re and Gr. The solution starts, in all cases, 
with N = 2 and then one more term is added when the last non-zero term in any of the series reaches 
a certain small value. However the maximum number of terms used in all cases is 20. Substituting 
from equation (6) into equation (1) and integrating both sides of the resulting equation (after 
multiplying each side, once at  a time by 1 ,  sin n6, cos no) with respect to 6 between the limits of 0 and 
2 ~ ,  we obtain 

where F, = F,(& t), G, = G,(& t), . . ., etc., and the functions X , ,  X,, and X,, are defined as 
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where K = m i- n,j = Im - nl, 6, = 1 when n = 1 and 6, = 0 when n # 1, and sgn(nz - n) means the 
sign of the term (m  - n). 

If we again substitute from equation (6) into equation (2) and use simple mathematical analysis 
we obtain 

(94  -- - e2<G, 
a t2  

Finally by using equation (6) together with equation ( 3 )  we obtain the following set of partial 
differential equations (p.d.e.s.) for the functions H,, k, and H, 

where the functions Z,, Z,, and Z,, can be easily defined. 

by using equations (5)  and (6) which results in 
The boundary conditions for all the variables given in equations (7), (9) and (10) can be obtained 

F ,  = f, = F ,  = h, = H ,  = 0 

and 

By integrating both sides of equations (9a), (9b) and (9c) with respect to < from 5 = 0 to < = a and 
applying the conditions given in (1 1 ), the following integral conditions can be deduced 
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The above conditions were used to determine the values of the functions G,, g, and G, at 5 = 0. It is 
also important to mention that satisfying the integral condition (12a) is necessary to ensure the 
continuity of pressure around the cylinder surface. 

In the first part of the motion (following t = 0) the streamlines are symmetric about the line 6 = 0 
since the buoyancy force is zero. In this part the boundary-layer co-ordinate x, where x= 
5j2(2t/Re)li2, is used instead of 5 since the boundary-layer thickness is very small. The method of 
solution in this part is exactly the same as that used by Badr and Dennisf3 for the special case of no 
cylinder rotation. The integration process in this part is terminated at  a time t = Re/8, at which 
5 = x, and the boundary layer becomes thick enough to use the original co-ordinate 5. At the start 
of the second part of the motion ( t  = Re/8)  the cylinder surface temperature is suddenly increased to 
T,, allowing both velocity and thermal boundary layers to develop with time. In this part the three 
sets of p.d.e.s [equations (7), (9) and (lo)] are integrated to advance the solution of 9, ( and 4 in 
time. 

The numerical method used for integrating equations (7) and (10) is based on a Crank-Nicolson 
finite-difference scheme in order to obtain the functions Go, g,, G,, H,, h, and H ,  at time t + At 
provided that all of these functions are known at time t. At each time step a direct solution for 
equation (9a) is obtained using central differences to determine the function F,. The functions f ,  
and F ,  are obtained by solving equations (9b) and (9c) using a step-by-step integration scheme 
similar to that used by Dennis and Chang.14 The solution procedure is similar to that used by 
Badr12 for tackling the problem of cross mixed convection. 

RESULTS AND DISCUSSION 

The effect of flow direction on the rate of heat transfer from a horizontal cylinder is studied for 
Reynolds numbers of Re = 5,10,20 and 40 and Grashoff numbers of Gr = Re2. The flow direction 
is varied from y = 0 to y = 180" with steps of 30". To compare and discuss results let us define the 
local and average coefficients of heat transfer h and Kas 

h = q/(T, - T,) and K= 
2n 

where q = - k(i?T//dr'),.=. is the rate of heat transfer per unit area. Define also the local and average 
Nusselt numbers N u  and Nusuch that 

N u  = 2ahjk and Nu = 2aKjk (14) 
where k is the thermal conductivity. The relationship between each of N u  and Nuand the functions 
H,, h, and H ,  can be deduced from equations (6), (13) and (14) and written as 

Nu= -(%) 
< = O  

It is found from the results that the velocity field is highly influenced by the free stream direction. 
Figure 2 shows the vorticity distribution on the cylinder surface for the case of Re = 20, Gr = 400 
and Pr = 0 7  and at different flow directions (y = 0, 60°, 120" and 180"). It can be seen from the 
Figure that /[I decreases over most of the cylinder surface as y increases. This is mainly due to the 
fact that when y = 0 the buoyancy forces are aiding the flow and accordingly causing higher 
velocities near the cylinder surface. This effect decreases as y increases until reaching y = 180" at 
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Figure 2. The variation of the vorticity on the cylinder surface for different free stream directions (Re  = 20, Gr = 400 
and P r  = 0.7) 
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Figure 3. The Nusselt number distribution on the cylinder surface for different free stream directions (Re  = 20, G r  = 400 
and Pr = 0.7) 
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Figure 4. Streamline patterns for Re = 10, P r  = 0 7 ,  Cr = 100 and for values of y of (a) 180", (b) 150", (c) 120", (d) 90", (e) 60" 
and (0 0" (streamlines plotted are $ = - 2.0, - 1.5, - 1.0, - 0.5, - 0.25, - 0.1, - 0~05,0,0~05,0~1,0~25,0~5,1~0, 1.5 and 2.0) 
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Figure 5. Isotherm patterns for Re -- 10, Pr = 0-7, Gr = 100 and for values of y of (a) 180", (b) 1 SO", (c) 120", (d) 90", (e) 60" 
and (f) 0" (isotherms plotted are # = 0.1, 0.2,. . . ,1.0) 



10 H. M. BADR 

which the direction of flow induced by natural convection is directly opposite to the forced flow 
direction. 

It is also found that the local Nusselt number distribution is greatly affected by the direction of 
the main stream. The variation of N u  around the cylinder surface for the same case and at different 
values of y can be seen in Figure 3. The Figure shows that N u  decreases with the increase of y over 
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Figure 6. Comparison between the values of N u  obtained from the present work and Hatton's experimental correlation' 
for the case of Re = 20, Pr = 0.7 and Gr = 400 
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Figure 7. Variation of the ratio Nu/Nu,  with free stream direction 
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most of the cylinder surface. This is expected to occur as a natural result of the slow down of the 
flow velocity near the surface. Figure 4 and 5 show the streamline and isotherm patterns for 
the case of Re = 10 and different values of y. It can be seen from Figure 4 that the size and 
orientation of the wake region is completely dependent on y. When y = 0 the circulating flow zone 
in the wake disappears and flow separation occurs only at the backward stagnation point 
(q = 180"). On the other hand, when y = 180" the flow field is divided into two distinct zones. The 
first one is surrounding the cylinder with the enclosed circulating flow driven by the buoyancy 
forces. The heat transfer regime in this zone is dominated by natural convection. The second zone is 
outside the first one and the buoyant forces there have smaller effect. The heat transfer between the 
two zones is mainly due to conduction at the boundaries since the fluid in the first zone is never 
convected to the second one. 

A comparison between the present results for % and the experimental correlation obtained by 
Hatton et al.' can be seen in Figure 6. The agreement between the two is satisfactory up to y = 90°, 
however as y approaches 180" Hatton's correlation becomes inapplicable.' Figure 7 shows the 
variation of N u / N u ,  with the angle y for all the cases considered, where Nu, is the average Nusselt 
number for a forced convection regime. The Figure also shows that the maximum value of % 
occurs when y = 0 and the minimum value occurs when y = 180" provided that the flow direction is 
the only variable. 

__ ____ 

CONCLUSION 

The effect of flow direction on mixed convection heat transfer from a horizontal circular cylinder 
has been studied in the range of Reynolds numbers up to Re = 40 and for Grashoff numbers of 
G r  = Re2. A numerical method was used to integrate the unsteady two-dimensional equations of 
motion and energy. The variation of the average Nusselt number with flow direction was found to 
be in good agreement with the previous experimental results especially when y < 90". The method 
used was found to be highly stable and accurate in the considered range of Re and Gr. The 
streamlines and isotherms were plotted to show the effect of flow direction on the velocity and 
thermal fields. 
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